Chevron Deepwater Strategy and The Energy Transition

Patrick Toomey

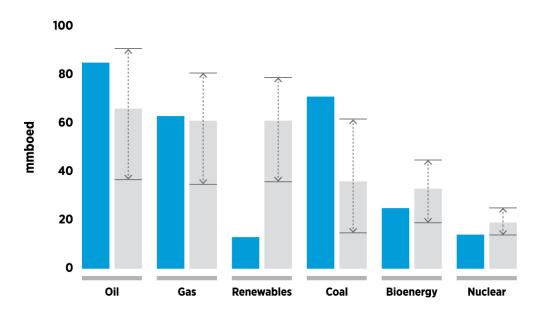
DeepStar® Consortium

31 Years of Industry Excellence

2022/2023 Core Members

DeepStar® Technical Subcommittees:

- Drilling, Completion and Intervention
- Flow Assurance
- Subsea Systems Engineering
- Floating Systems & Met-Ocean
- Autonomous Operations
- Green House Gas Emissions / Carbon Abatement / Hydrogen Related Technologies



How we approach the future energy mix

Oil & Gas will still be needed in 20 years.

Renewables have greatest growth.

Economics, policy, and technology influence pace.

	2019 Demand
	2040 Average scenario demand
∻ >	2040 Scenario ranges

mmboed = millions of barrels of oil-equivalent per day

Sources: IEA, World Energy Outlook 2020; IHS Markit 2020 Scenarios; Wood Mackenzie, Energy Transition Outlook 2020: Highlights; IEA, Net Zero by 2050.

Deepwater Facilities Technology Strategy & Focus Areas

190 km – Chevron Gorgon

Long Distance Tiebacks:

Actively developing new technologies for long distance tiebacks. Focus is on lowering costs and increasing reliability. The following is a partial list of ongoing work:

- Subsea Long-Distance Power & Communication
- All Electric Subsea Systems
- Normally Unattended Facilities (NUF)
- Smart Riser & Pipeline Systems
- Flow Assurance (e.g. Hydrates, Asphaltenes, etc.)
- Super insulated pipelines
- Fiber Optics
- ??? km Future Robotics

Future: Strategic, holistic approach to field development

- Fewer new Platforms & FPSOs
- Extend life of existing platforms with tiebacks
- More, longer distance subsea tiebacks
- Lower Carbon

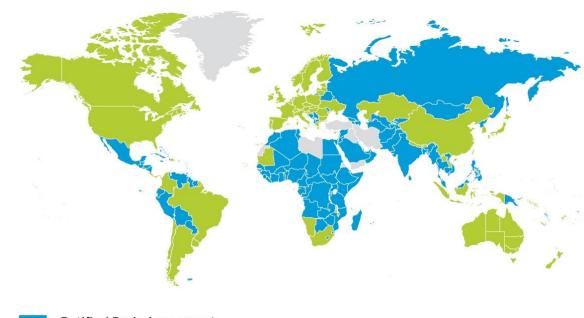
Platforms & FPSOs:

Focus is on minimizing footprint and utilizing standardized designs to lower cost and cycle time for new facilities:

- Supplier Led Solutions (SLS)
- Minimum Functional Objectives (MFO)
- Normally Unattended Facilities (NUF)

Energy Transition

advancing a lower carbon future


© 2022 Chevron

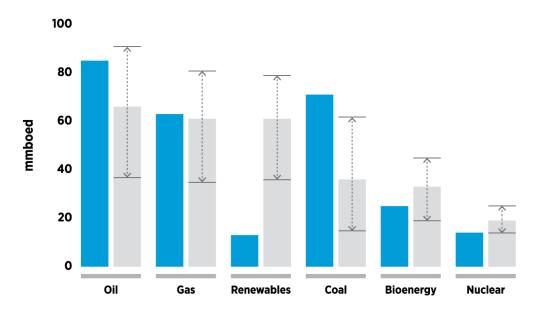
The future is lower carbon

Economic macrotrends

Policy advancement

Technology and innovation

Ratified Paris Agreement Ratified Paris Agreement and government support for net zero



How we approach the future energy mix

All forms of energy are needed.

Renewables have greatest growth.

Economics, policy, and technology influence pace.

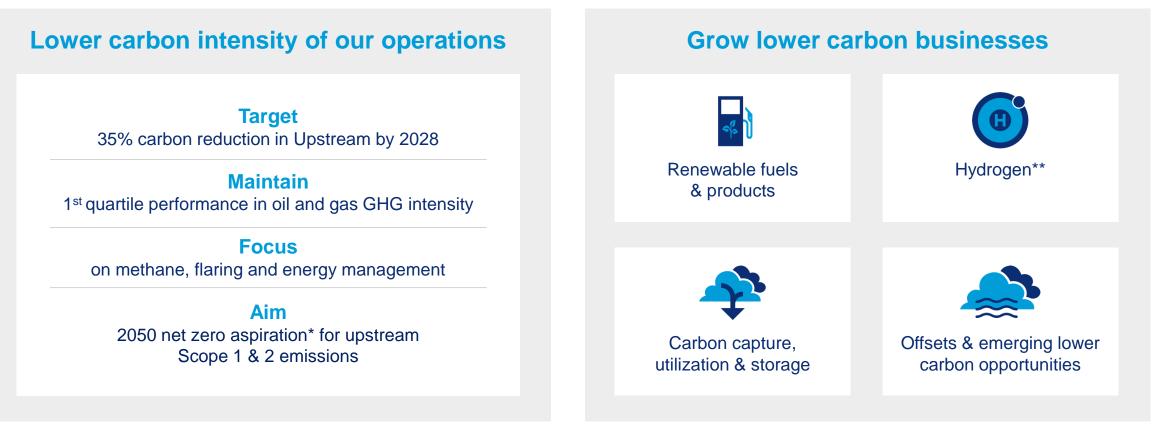
	2019 Demand
	2040 Average scenario
<>	2040 Scenario ranges

mmboed = millions of barrels of oil-equivalent per day

Sources: IEA, World Energy Outlook 2020; IHS Markit 2020 Scenarios; Wood Mackenzie, Energy Transition Outlook 2020: Highlights; IEA, Net Zero by 2050.

demand

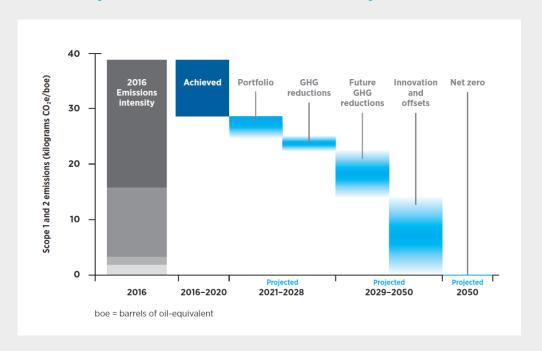
Our strategy



"Our strategy is clear: Leverage our strengths to safely deliver lower carbon energy to a growing world."

> Mike Wirth Chairman of the Board and CEO of Chevron

Our Energy Transition strategy Advance a lower carbon future


Chevron expects to triple our lower carbon capital versus prior guidance to over \$10 billion between now and 2028: \$2B in carbon reduction projects and \$8B in low carbon investments

* Upstream emission intensity Scope 1 and 2 in kgCO₂e/BOE.Achieving the Upstream 2050 net zero aspiration will require continued partnership and progress in technology, policy, regulations, and offset markets. © 2022 Chevron

**Chevron's approach to hydrogen envisions the use of green, blue, and gray hydrogen. See Climate Change Resilience Report pg 51.to learn more.

Our ambitions to advance a lower carbon future

Upstream Net Zero 2050 Aspiration*

Grow lower carbon business 2030 targets 25 **Carbon capture and offsets MMTPA** 150 Hydrogen+ **MTPA** 40.000 **Renewable natural gas** MMBTU/D 100.000 Renewable diesel and SAF B/D +Partially grey, blue and green

Chevron has set a new GHG intensity target** Portfolio Carbon Intensity, that represents the carbon intensity across the full value chain associated with bringing products to market, including Scope 3 emissions from the use of sold products, our largest category of Scope 3 emissions

*Upstream emission intensity Scope 1 and 2 in kgCO2e/BOE. Achieving the Upstream 2050 net zero aspiration will require continued partnership and progress in technology, policy, regulations, and offset markets.

**This target allows Chevron flexibility to grow its traditional upstream and downstream business while remaining increasingly carbon-efficient © 2022 Chevron

Renewable fuels & base oil targets

Renewable natural gas	Renewable diesel & sustainable aviation fuel	Renewable base oil & lubricants			
10X growth by 2025	3X growth by 2025	20X growth by 2025			
>40,000 MMBTU/D by 2030	100,000 B/D by 2030	100,000 TPA by 2030			
Expanding partnerships	Capital efficient	Patented technology			
Increasing CNG sites	Feedstock flexibility	Multiple product lines			
Note: All growth metrics baseline year-end 2020.					

Leading in renewable natural gas

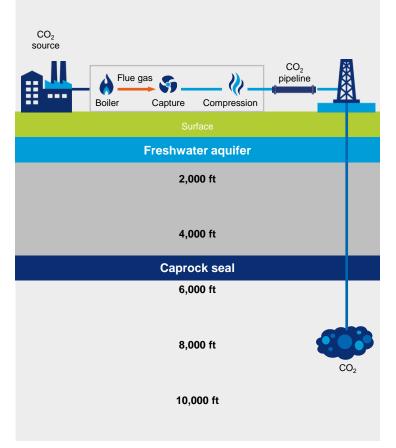
Advancing technology for lower carbon businesses

What is CCUS?

CCUS process

Carbon Capture

Capture CO₂ before it enters atmosphere


Utilization

Reuse CO₂ to produce low or negative emissions products such as cement, steel, chemicals, plastics, and fuels *or...*

Storage

Permanently store that CO₂ underground (i.e., depleted oil or gas fields or saline formations)

Simplified CCS value chain

Safe and effective CO₂ injection and storage

- Large-scale injection & storage of CO₂ working safely and effectively for decades in oil & gas production
- Chevron helped pioneer CO₂ injection into oil formations for enhanced recovery approximately 40 years ago.
- Safely operating CO₂ pipeline in Colorado for 35 years

CCUS

We have a unique set of capabilities to develop a profitable CCUS business across the full value chain:

Critical to a lower carbon future

Existing assets and larger-scale opportunities

Subsurface capabilities

Generating value through offsets

Source: BCG; Base case analysis on known and projected climate commitments.

Offsets

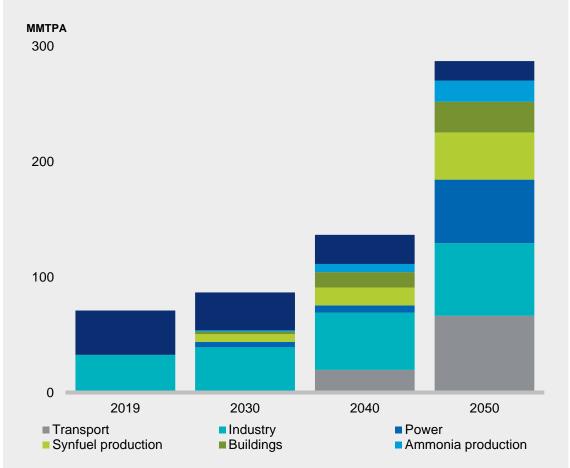
We plan to grow a carbon offsets business to:

Lower our carbon intensity and provide a way forward

Help customers to achieve their emissions-reduction goals

Invest in scalable, nature-based solutions

The role of hydrogen The future of energy is lower carbon

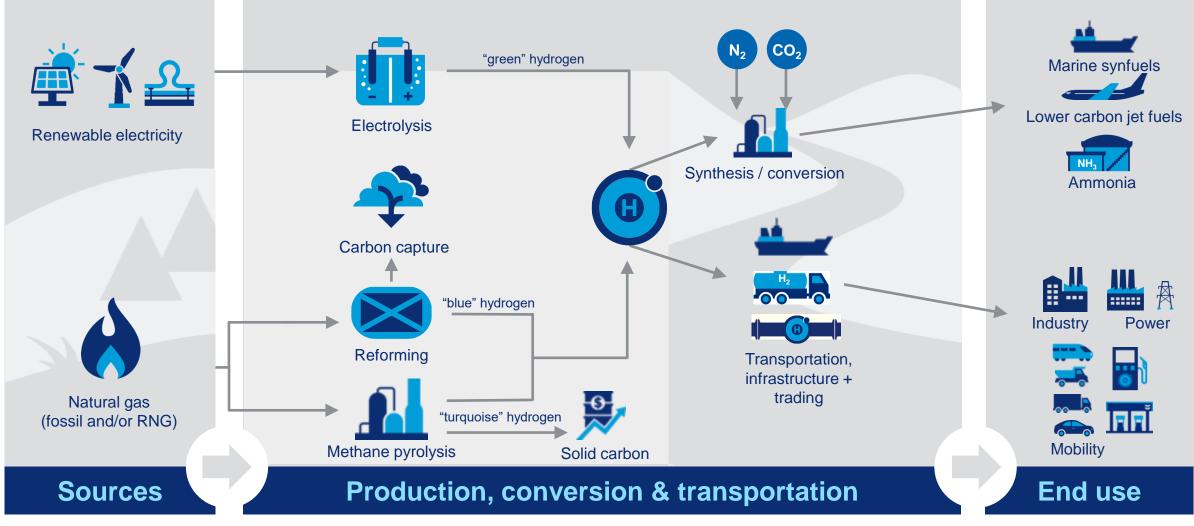

Hydrogen's growth is linked to decarbonization

- Part of the solution where electrification of demand is not feasible
- Requires developing and maturing a lower carbon hydrogen value chain
- Combined with other efforts such as CCS, offsets, renewable fuels, and lower carbon intensity oil & gas

Hydrogen in the future energy mix

- Anticipated 6% of total energy consumption by 2050
- Requires 4-fold growth from today
- ~500 projects under assessment/development
- Policy, industry investment and partnerships necessary to meet growth projections

IEA SDS H₂ demand projections



Source: IEA, Energy Technology Perspectives 2020 under IEA's Sustainable Development Scenario (net zero by 2070; 2deg) Note: Ammonia refers to fuel production for shipping sector; Industry includes Hydrogen for industrial ammonia production

Hydrogen value chain

Hydrogen

Our approach envisions the use of green, blue, and gray hydrogen, and we are well positioned to participate across the value chain:

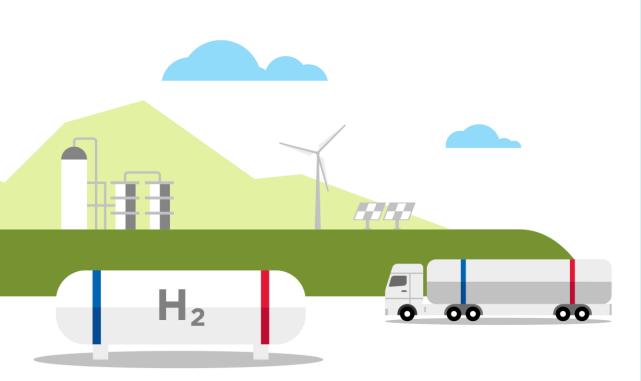
Significant growth potential

Harder-to-abate demand

Existing assets and capabilities

Developing partnerships

RAVFN



ΤΟΥΟΤΑ

Questions and Answers